Industrial Hygiene


Field Blanks: Why and When to Collect

Quality Assurance in Industrial Hygiene Sampling

Sound industrial hygiene sampling practice requires good quality assurance (QA) practices. QA is defined as:

the maintenance of a desired level of quality in a service or product, especially by means of attention to every stage of the process of delivery or production.

In essence, QA seeks to minimize error and at the same time evaluate sampling performance. Key QA practices include the following:

  • use of standard operating procedures (SOPs) for sample collection and analysis;
  • use of chain-of-custody and sample-identification procedures;
  • instrument standardization, calibration, and verification;
  • technician and analyst training;
  • sample preservation, handling, and decontamination; and
  • use of quality control (QC) samples such as field and transport blanks, duplicates, etc.

Quality Control: Why collect Field Blanks?

One of the methods of quality control in industrial hygiene sampling is through the collection and analysis of “control samples”. Control samples are typically in the form of blanks, duplicates, spiked samples, or split samples. Blanks can be further refined into several categories including: field blanks, transport blanks & media blanks.

  • Field Blanks – determine if there was contamination during the collection stage
  • Transport Blanks – determine if there was contamination during the shipping stage
  • Media Blanks – determine if the media itself is contaminated

Therefore, if quality assurance is our goal, and the use of field blanks (i.e. quality control) are one of our methods for ensuring QA.

How to Collect a Field Blank

Field blanks are clean sampling media and are handled in exactly he same manner as the samples you are collecting, except:

  • No air is drawn through them (for air samples), or no surface is wiped with them (for surface / wipe samples),
  • They are opened and closed quickly in the sampling area and then resealed, and
  • Accompany the actual samples through every stage of the sampling process.

How Many Field Blanks Should I Collect?

The number of field blanks you should collect should be based on a few considerations (in order of importance), including: sample method, reason for sampling, and budget considerations. The sampling method (e.g. NIOSH or OSHA) should dictate how many field blanks you should collect (see image below), based on the number of samples you collect. Typically, the recommended practice is 10% of your number of samples.

What do I do if the Contaminant is Detected in the Field Blank?

If a contaminant is found on the field blank, the field blank contaminant is typically going to be reported as a mass, and not a concentration (remember, no air volume was drawn through the field blank sample). The mass of contaminant found on the field blank will be subtracted from that found on the actual sample before dividing by the air volume to determine the mass concentration of the contaminant. Additionally, it’s important to note the sampling methods often have a permissible limit of contaminant on the field blank. If this level is exceeded, the samples should be discarded and sampling repeated.

If we do not account for the field blank contamination, the industrial hygienist runs the risk of the reported results being biased high, which can lead to: additional sampling or the implementation of potentially unnecessary controls.

Why Don’t Industrial Hygienists Take Field Blanks?

Practicing industrial hygienists don’t take field blanks for several reasons, including: budgets (10% extra costs for “worthless” blanks can seem excessive), improper training, unfamiliarity with the sampling methodology, and they don’t want competence questioned. However, none of these reasons justify forgoing good QA/QC practices to ensure the integrity of your samples.


Free eTool: Industrial Hygiene Exposure Assessment Characterization

industrial hygiene exposure assessment decision matrix

Anticipate, Identify, Recognize

When starting an occupational exposure assessment, the first step a practicing industrial hygienist must do is be able to anticipate, identify, and/or recognize workplace hazards so that stressors that may impact employee health can be evaluated later in the assessment. Understanding the workplace, how chemical and physical agents are generated and the existing control measures (e.g. engineering controls) in place, help the industrial hygienist to develop an effective plan for evaluating risks.

IHEST – Industrial Hygiene Exposure Scenario Tool

AIHA has released the free IHEST (Industrial Hygiene Exposure Scenario Tool) which helps an industrial hygienist to identify and capture basic exposure potential data, for the purpose of improving evaluation accuracy in the assessment process. The tool includes prompts for:

  • Process Overview
  • Task Description
  • Exposure Controls
  • Similar Exposure Groups
  • Employee Tasks
  • Ventilation
  • Room layout
  • Airborne concentrations
  • Dermal exposures, and
  • Noise exposures

Download a copy of the AIHA IHEST from AIHA’s website or without macros below.

Source: AIHA

Statistical Analysis of Health & Safety Data – IHSTAT

Are you looking for statistical analysis of health and safety data (e.g. number of measured occupational exposures that exceed established OELS)? Take a look at OHShub.com’s post on IHSTAT, where you can download AIHA’s excel worksheet that can perform some basic statistics for you.


AIHA Publishes Body of Knowledge on IAQ, Respiratory Protection, and Direct Read Instruments

aiha

AIHA has begun publishing technical documents that represent the “body of knowledge” that a competent and skillful practitioner should possess.  The documents are available for free on AIHA’s website and currently consists of the following:

More BoK documents are in development.

Source: AIHA BoK


Free Online Training Modules in Occupational Hygiene

The Occupational Hygiene Training Association (OHTA), has created a new website, www.OHLearning.com, where free course materials for international occupational hygiene training modules are posted.  Find training materials, learn about occupational hygiene, or develop your existing skillset.

Modules currently available include:

  • Noise
  • Asbestos
  • Measurement of Hazardous Substances
  • Health Effects of Hazardous Substances
  • Control of Hazardous Environments
  • Thermal Environments
  • Ergonomics
  • Basic Principles of Occupational Hygiene

According to the website, OHTA mission is as follows:

OHTA was formed to promote better standards of occupational hygiene practice throughout the world.  We develop training materials and make them freely available for use by students and training providers.  We also promote an international qualifications framework so that all hygienists are trained to a consistent, high standard, recognized in all participating countries.